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Abstract

Memory engrams change on the microscopic level
with time and experience as the neurons that com-
pose them switch in a process termed representa-
tional drift. On the macroscopic level the engrams
are not static either: numbers of engram neurons
in different brain regions change over time, which is
considered to reflect the process of memory consol-
idation. Here we predict a link between these two
levels, using a novel statistical physics approach to
engram modeling. Importantly, it is general as it
makes only minimal assumptions on the engram’s
nature, does not rely on a specific architecture, and
its fundamental implications hold for any represen-
tational drift with random component. Our first,
analytically well tractable model shows that an en-
tropic force emerges at the region level from ran-
dom representational drift at the neuronal level.
We refine the model by incorporating the interac-
tion of the entropic force with biological processes
that shape neuronal engrams. Here, the connec-
tivity between the brain regions strongly influences
the (quasi-)equilibrium engram distribution. The
obtained distributions are in qualitative agreement
with the ones of a biologically detailed drifting as-
sembly model. Our engram description allows to
predict the engram evolution in large neuronal sys-
tems such as the mouse brain. We find several pre-
dictions that are consistent across the valid tested
parameter ranges, such as a strong tendency of the
engram to leave the hippocampus. The results sug-
gest that the brain operates in a regime where en-
grams drift, both deterministically and randomly,

to allow for memory consolidation.

Introduction

One of the most important functions of the brain is
to convert experiences into memories and to store
these memories for significant amounts of time. En-
sembles of neurons and the synapses interlinking
them are believed to provide the physical substrate
for the memory storage: the engram [1-6]. Mem-
ory engrams are not static: On the microscopic
level the neurons that compose them change with
time and experience in a process termed represen-
tational drift [3,7-9], whose functional role is still
unclear. On the macroscopic level the numbers of
engram neurons in different brain regions change
over time [10,11]. Furthermore, over time memories
are consolidated [12-14]; consequently, the macro-
scopic change of engram neuron numbers is often
assumed to be a neuronal correlate of memory con-
solidation.

A classical view of consolidation posits that the
parts of a new memory engram, which are dis-
tributed throughout the brain, are crucially con-
nected through the engram parts in the hippocam-
pus [13,15,16]. The hippocampus then guides the
isocortex to form direct or indirect connections be-
tween the parts itself. Over time, the memory may
thereby become completely independent of the hip-
pocampus. This view of consolidation inspired a
large number of modeling studies [17-26]. These
highlight a variety of network architectures and
plasticity rules that may allow the transfer of the



functionality of the hippocampal engram parts to
the isocortex. However, there are a number of
weaknesses of the classical view of consolidation
and alternative possibilities exist [27].

Here we develop models connecting representa-
tional drift and the distribution of an engram across
the brain’s regions over the course of time. In our
models the memory engrams drift by determinis-
tic and random remodeling. Importantly, the ran-
dom remodeling can induce on a macroscopic scale
practically deterministic transitions between brain
areas. Our models do not require the hippocampus
to guide the isocortex during consolidation. The
hippocampus might then just be one region among
many others, which initially binds distributed en-
gram parts possibly due to its connectivity and spe-
cific learning abilities [28]. Using an approach from
statistical physics as well as detailed neural net-
work modeling we show how the random drift of
a memory engram at the microscopic level leads
to the emergence of a practically deterministic en-
tropic force [29] on the macroscopic engram, which
tends to equilibrate memory coding levels across
the brain regions. We further show how neuronal
preferences, which can be biologically implemented
via plasticity rules and govern deterministic drift,
may be captured by an energy function. This al-
lows to study their interaction with the random
drift within our framework. We then introduce a
detailed biological model of a drifting engram and
find that its evolution characteristics qualitatively
agree with those of the statistical physics models.
Finally we apply our model of engram drift to the
whole mouse brain to model and thereby predict
macroscopic engram transformation. Our findings
suggest that the brain operates in the regime that
supports representational drift to allow memory
consolidation.

Results

A purely-random engram drift

Engram tracking experiments often report the
number of engram neurons in a particular brain
region [10,11]. We call the state specified by this
macroscopic level description the macrostate. It
omits the exact microscopic details of the engram
structure. Consider first a single brain region and

an engram within it. The macrostate is then simply
the size of the engram: the number n of neurons
that form it, Fig. 1. A more detailed description
of the engram, listing the particular neurons form-
ing it, specifies a microstate. The same engram
macrostate can thus result from many different mi-
crostates. We imagine each engram neuron to pos-
sess strong synaptic connections with the rest of
the engram [4,5,30], without yet explicitly model-
ing them.
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Figure 1: Engram drifting in a single brain region.
Engram neurons are shown in red; non-engram neu-
rons in gray. In our first, simple statistical model,
the microstate performs a random walk with con-
served overall engram size, here n = 5. If there is

only a single brain region, the engram size defines
the macrostate, which is therefore also conserved.
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Experiments show that over time, some neurons
may leave the engram and others join it, such that
the engram drifts [3,8,9]. Such representational
drift may be caused, for example, by noise in the
plasticity rules, spontaneous synaptic turnover, or
change of intrinsic properties [31-33]. The exact
mechanism behind the drift is not important for our
models and analysis. As a first, simple model, we
assume that at each time evolution step, a random
neuron leaves the engram and a random neuron
joins it. Then, the engram size n and, in the case of
a single region, the macrostate is conserved, Fig. 1.
The drift is a random walk through the microstates.
Mathematically it is a random walk on a Johnson
graph [34,35]. Since each microstate has the same
number of microstates that it can transition to and
arise from, each node of the corresponding graph
has the same number of connections. This implies
that in the long run each microstate has the same
frequency of occurrence [34]. Since all microstates
are equally likely, in statistical physics terms they
form a microcanonical ensemble [36].



Engram drifting in two brain regions

For two brain regions, an engram has n; neurons
in the first region and ny neurons in the second
region, Fig. 2a; ny and ny define its macrostate
n = (ny1,ng). Random representational drift may
gradually change the ensemble of engram neurons
and thereby the microstate m (m; = 1 if neuron
i is an engram neuron and 0 otherwise). However,
the macrostate now changes even if the overall en-
gram size stays constant, Fig. 2b: this is because,
for example, a neuron in Region 1 may leave the
engram and a neuron in Region 2 may join it.
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Figure 2: Engram drifting in two brain regions. (a)
Example engram microstate for two regions with 6
and 12 neurons (dashed line: separation between
the regions). The engram contains five neurons,
shown in red; non-engram neurons are displayed
in gray. To define a microstate, each neuron is
assigned an index. The ith entry of the vector
m characterizing the microstate is 1 if the neuron
with index ¢ is part of the engram and 0 otherwise.
The two entries of the vector n characterizing the
macrostate are the numbers of engram neurons in
the two regions. (b) Schematic engram trajectory
due to drift. (b, upper) Illustration of the realized
microstates. (b, lower) Trajectory in the microstate
space. Gray shaded areas indicate macrostates and
their multiplicities Q(n).

The simplest way to obtain a two-region net-
work is to superficially define two regions in a sin-
gle region network, without applying any further
changes. We chose such a partition into a smaller
region containing N7 neurons and a larger one with

N5 neurons, where N; + Ny = N is the total net-
work size. We consider a more biologically mo-
tivated partition in a later section. In the con-
text of classical theories of memory consolidation
(see Introduction), the smaller region may be in-
terpreted as hippocampus and the larger one as
isocortex. Assuming again that at each step a ran-
dom neuron leaves the engram and a random neu-
ron joins it, the process is a random walk in the
microstate space with the same properties as in
the case of a single region. In particular, in the
long run each accessible microstate occurs with the
same frequency. The probability of an engram be-
ing in a particular macrostate is then proportional
to the “volume” that the macrostate occupies in the
microstate space, more precisely to its multiplicity
Q(n), i.e. to the number of underlying microstates,
Fig. 2b. This is the origin of the entropic force that
distributes the engram over different brain regions
in our models.

Importantly, the entropic force leads to directed
engram changes on the macroscale. To clarify this,
we first study the extreme case where engram neu-
rons are initially only in the smaller region; more
realistic initial states are considered in a later sec-
tion. Fig. 2b exemplarily displays engram micro-
and macrostates during the initial phase of drift
in a very small network. Fig. 3a shows the evo-
lution of the engram macrostates due to drift in a
larger network. We observe that the majority of the
engram quickly leaves the smaller region (the hip-
pocampus) and enters the larger one (the isocortex)
until equilibrium, Fig. 3b, is reached. This general
engram transformation may explain the similar ex-
perimentally observed transformation that is often
identified with memory consolidation and transient
initial dependence of many memories on the hip-
pocampus [12-14,27,37].

Engram equilibrium

After a sufficiently long period of drift the proba-
bility that the engram is in a particular macrostate
n = (ni,ng) is proportional to its multiplicity.
We can obtain this number of corresponding mi-
crostates by computing the number of ways to se-
lect n; engram neurons from the N; available Re-
gion 1 neurons and ms engram neurons from the
Ny available Region 2 neurons, Q(n) = (Nl)(NZ).

ni n2
Since in our simple model the engram size is fixed



Figure 3: Drift of an engram of fixed size (n = 50)
in a network with two regions (N; = 70, No = 280).
(a) Ten example engram drift trajectories (light
blue). The engrams are initially completely in Re-
gion 1, ni(t = 0) = n. They quickly enter Re-
gion 2 and eventually settle at equilibrium. The
majority of engram neurons is then in Region 2.
Individual trajectories stay near the ensemble av-
erage (blue) and the matching theoretical average
(dashed black); the time evolution is close to de-
terministic despite the rather small size of the con-
sidered engram. Time ¢ is the number of engram
neuron replacements. (Inset) In a ten times larger
system the relative size of fluctuations around the
mean trajectory is smaller such that they are hardly
visible. (b) Theoretical (black) and observed (blue,
1000 samples) equilibrium probability distributions
of a macrostate with n; engram neurons in Region
1. (c) Entropy S(n) of the macrostate n = (ny, ng).
The black line indicates the accessible macrostates,
which satisfy the constraint n = ny + no; the cross
indicates the average of the equilibrium distribu-
tion. The microstates are discrete but dense, we
use lines instead of points for visualization only.
(d) Entropy of the accessible macrostates, S(ni) =
S(ni,m —mnq), i.e. essentially the entropy along the
black line in (b, left). The thin dotted lines in
(a,b,d) highlight the equilibrium distribution’s av-
erage, which is nearly identical to the most proba-
ble macrostate.

to n, only those macrostates are accessible (can be
present) that satisfy the constraint n; + ne = n.
The multiplicity is typically a very large num-
ber. Therefore we often take its logarithm, In Q(n),
which can be identified with the Boltzmann entropy
from statistical physics, S(n) = InQ(n), Fig. 3c,d.

The macrostate equilibrium probability, Figure
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3b, is p(n) = Q(n)/Q(n) where the normalizing
factor is one over the total number of accessible
microstates, Q(n) = (JT\L[ ). The expected equilib-
rium number of engram neurons in the first region
is (n1)eq = nIN1/N. This makes sense intuitively:
At a time point long after equilibration, the en-
gram will be homogeneously distributed over the
network. Thus the expected fraction of engram
neurons in Region 1, (n1)eq/n equals the fraction
of neurons in Region 1, N1 /N. The drift thus tends
to equalize memory coding levels, i.e. fractions of
engram neurons, between the regions: As an exam-
ple in our case of two regions we get (n1)eq/N1 =
(n2)eq/Na.

The fluctuations at equilibrium, characterized
by the coefficient of variation, are 1/4/(n1)eq (for
large engrams and networks, Methods): As the
number of engram neurons in a region becomes
larger, the relative size of equilibrium fluctuations
decreases and the equilibrium distribution becomes
more sharply peaked.

Approach to the equilibrium

We now examine the evolution of far-from-
equilibrium engram macrostates in more detail.
Starting in some fixed initial macrostate n(0), the
engram reaches macrostate nq (t) after ¢ time steps.
The average macrostate trajectory due to drift is

(n1(8)) = (n1)eq + (n2(0) = (na)eq)e ™7, (1)

—1/In (1 — ﬁ) (Methods) and
the fluctuations around the average trajectory are
small, see Fig. 3a. Therefore, the microscopically
random engram drift leads on the macroscopic scale
to a directed evolution towards equilibrium. For
N > n > 1, which we expect for typical systems,
the exponential relaxation to the equilibrium is de-
termined just by the engram size, 7 = n. The emer-
gence of practically deterministic macroscopic dy-
namics in a sufficiently large stochastic system is
well known in statistical physics: it marks, for ex-
ample, the transition to thermodynamics [36, 38].
In our system, the directed evolution suggests that
there is a force acting on the engram, which drives
it towards the equilibrium state. This force is the
emergent entropic force [29]. It originates from the
fact that the engram remodels randomly and has a
large number of possible microstates.

where 7 =



Importantly we demonstrated the existence of
this emergent force by purely statistical arguments.
This reflects the fact that the exact drift mecha-
nism is irrelevant: Random drift or drift with a
random component yields an entropic force. This
lets newly formed engrams that are not in equi-
librium undergo a transformation on the macro-
scopic scale. For the simple model examined in
this section, the drift yields the only force behind
this transformation. In the next sections we con-
sider also the effects of neuronal connectivity pref-
erences and structural connectivity, which lead to
more complicated long-term dynamics than an ex-
ponential relaxation to equal coding levels.

An engram energy

A hallmark of the interconnectivity of neurons in
the brain is that it is generally sparser between
neurons in different brain regions. This is a con-
sequence of factors such as space and energy con-
straints, which limit the number of potential con-
nections [39]. We will henceforth refer to two neu-
rons as structurally connected if a synapse can
potentially exist between them [40]. Whether a
synapse exists between two structurally connected
neurons is influenced by synaptic plasticity [41,42],
often in an activity dependent manner. To capture
effectively the interplay between neuronal activity,
synaptic plasticity, and structural connectivity, we
again choose a bird’s eye, statistical perspective:
We assign each microstate m an energy H(m).
Microstates with lower energy are preferred by the
engram and have a higher chance of occurrence.
This allows us to describe the states of our neural
system as a canonical ensemble [36], i.e. the prob-
ability of a microstate is given by the Boltzmann
distribution, p(m) o e #H(™)_ This is in contrast
to our first model, where all accessible microstates
were equiprobable (have the same energy). In sta-
tistical physics, the constant 3 is the inverse of the
temperature; small 8 (high temperature) indicates
large random fluctuations and thus a strong en-
tropic force. Analogously, in our system, 5 deter-
mines the strength of the randomness of the rep-
resentational drift and thus the associated entropic
force. In the absence of random representational
drift (8 — o00), the engram would always drift to-
wards microstates with lower energy.

To construct an appropriate energy function, we

introduce for a system consisting of N neurons an
N x N structural connectivity matrix A, with el-
ement A;; = 1 if neuron j can potentially form a
synapse to neuron i and 0 otherwise. As before, the
microstate m is a vector of length NV, with compo-
nent m; = 1 if neuron ¢ is an engram neuron and 0
otherwise. To write an expression for the energy we
need to make assumptions about the nature of an
engram; consistent with previous experimental and
theoretical work, we assume that it is a neuronal as-
sembly [43—45]: a group of strongly interconnected
neurons. Each assembly neuron should have suf-
ficient but not overwhelming recurrent input from
the rest of the assembly. Therefore we introduce
a constant k that represents an optimal, desired
number of connections from other assembly neu-
rons. Biologically, homeostatic plasticity and lim-
ited synaptic weights may increase the probability
of such a configuration [31,46] and thus implement
the connectivity preference.

Furthermore, to foster an assembly, neurons
should prefer to have reciprocal synapses. These
are indeed more common than expected by chance
in biological neural networks [47]; the preference
could be implemented by symmetric forms of ac-
tivity dependent plasticity [48]. We assume that
all structurally permitted synapses between assem-
bly neurons are formed. This is because we expect
that biological assembly neurons tend to be coac-
tive and that this leads to the strengthening of pos-
sible synapses. The above points lead us to assign
the assembly-engram microstate the energy

2
N

Aijmj —k m;
=1 \j=1

(2)
N
+9 Y (Aij = Aji)*mem;.

4,j=1

Its first term measures how much the number of
synapses that each engram neuron receives from
other engram neurons deviates from the desired
number k. Such deviations are punished quadrati-
cally. However, this is not enough to favor a neu-
ronal assembly: for example a circular feedforward
chain [46,49] would be likewise favored by this en-
ergy term. The distinguishing feature of an assem-
bly are its reciprocal connections between the neu-
rons. Missing reciprocal connections are thus pun-



ished by the second term. The constant g deter-
mines the relative strength of the two terms.

Engram dynamics and

(quasi-)equilibrium

To model the engram dynamics, we choose again in
each time step randomly a neuron. If this neuron
belongs to the engram, it may now stay or leave.
The probability of either depends on which out-
come is more favorable, i.e. on the resulting energy
change. This can be interpreted as perturbing the
state by preliminarily making the change and then
probabilistically accepting or rejecting it. Out-
comes more favorable than the current state, which
result in a negative energy change, are more prob-
able, Fig. 4a. Smaller 5 renders the energy change
less relevant: it yields, for example, higher proba-
bilities that the neuron leaves despite resulting less
favorable states. This leads overall to stronger ran-
dom drift. An alike probabilistic outcome selec-
tion happens if the neuron is originally not part
of the assembly. Specifically we use the Glauber
algorithm [50] for the simulation (Methods).

To illustrate the engram dynamics generated by
our model, we first apply it to a network of two
regions. The structural connectivity is specified by
p11 = p22 = 1 and p12 = pa1 = p, where p,, is
the probability that a structural connection from
a neuron in region r to neuron in region s exists.
Thus, within a single region each synaptic connec-
tion is possible and the probability of possible inter-
region connections is symmetric. We again begin
with the engram initially located completely within
one of the regions. Fig. 4b-d displays resulting
very long-lived metastable states; transient dynam-
ics for different p are shown in Fig. S1. The very
long-lived metastable states can be quasi-equilibria,
which would change for time tending to infinity, or
true equilibria; if we do not need to emphasize this
distinction, we denote them all as quasi-equilibria
for simplicity. Remarkably, we observe that for
the chosen energy function we can find parameters
such that the statistical model has qualitatively the
same behavior as the detailed biological model in-
troduced in the next section.

If the engram is initially in the smaller region,
Fig. 4b, there is an intricate dependence of its
quasi-equilibrium on the regions’ interconnectivity
p. It may be explained as follows: For p ~ 0, pa-

rameter domain I, the regions are basically sepa-
rated and the engram remains in the original region
for the considered long simulation times. As p in-
creases, domain II, neurons from the larger region
can join the engram. The regions are, however,
still only weakly interconnected and the synaptic
contribution from one region to the other remains
small. Therefore, each region contains on its own
a slightly smaller number of engram neurons as a
single region would host to maintain the desired
level of interconnectivity. The slight reduction in
the number of neurons is due to the input from
the other region. As p increases further, domain
II1, the engram can freely drift between the two re-
gions, and, since the engram energy is smaller the
more reciprocal connections it has, it moves nearly
completely to one region, choosing the entropically
more favorable, larger one with more available mi-
crostates. As the probability p increases further,
domain IV, the engram is again found in both re-
gions, since the energy of such microstates is not
prohibitively large anymore. As p tends to 1 there
is less and less distinction between the regions and
the system tends to behave like one large region;
the quasi-equilibrium averages are thus determined
by the entropy: the numbers of engram neurons are
such that the coding levels in both regions become
equal as in our first model. If the engram is initially
in the larger region, the number of engram neurons
in this region simply decays with increasing p. In
particular, there is no analog to domain II, because
there are too few neurons in region 1 to expect that
some have by chance sufficiently many connections
with assembly neurons of Region 2. Therefore prac-
tically no neurons in Region 1 join the assembly
despite the considered long simulation times and it
remains in Region 2.

An engram free energy

Microstates that belong to the same macrostate can
have different energies Eq. 2 due to the particular
realization of the structural connectivity. In order
to better understand the evolution of the assem-
bly, we construct a simplified model by averaging
the energy over the realizations of structural con-
nectivity. For this we consider R brain regions and
again denote the probability of a structural connec-
tion from a neuron in region r to a neuron in region
s by psr. A macrostate is then specified by a vector
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Figure 4: Engram dynamics and quasi-equilibria in the random-and-deterministic drift model (5 =
0.012, k=28, g =5.5, N; =70, Ny = 280). (a) Energy-based simulation of engram drift. A candidate
microstate is proposed by perturbing the current one, it is accepted or rejected depending on its energy.
The probability of acceptance reflects the strength of representational drift. (b) Number of assembly
neurons at quasi-equilibrium (mean + std) in the first (blue) and the second (orange) region and total
size (black) as a function of inter-region structural connectivity; initially the assembly is completely in
Region 1. Points show mean + std for the exact model, solid lines with shaded regions show the same
for the simplified one. Dotted lines indicate parameter domains (I-IV) with different engram behavior.
(c) Same as (b), but with the engram initially completely in Region 2. (d) An example of connections
between assembly neurons after long time evolution, for four different levels of structural connectivity
between the regions, as determined by the inter region-structural connection probability p. Initially the
engrams are completely in Region 1. Connections between assembly neurons are shown in red, existing
structural connections in white and absent structural connections in gray. Dashed lines indicate region
boundaries. Reordering shows preserved engram structure (inset, focusing on non-empty matrix part)
(e) Free energy F'(n) as a function of the macrostate n for the same four levels of structural connectivity
between the regions as in (d). Crosses indicate macrostates of an ensemble of engrams after long evolution
(brown “x”: engrams initially completely in Region 1, pink “+”: engrams initially completely in Region
2).

n of length R that assigns each region the number e #H(™) which is just the sum of the probabili-
engram neurons in it. Starting with Eq. 2, the aver- ties of the microstates associated to n. We can
aging yields for a microstate m that belongs to the rewrite this using the so-called free energy F(n) =
macrostate n the energy (see Methods for details) H(n) — In€2(n)/B: the probability of macrostate
n is then proportional to e #F(™) . The free en-

R 2 R ergy accounts for the energy and the multiplicity

H(n) = Z ( PsrTr — k) ns + Z Psr(1 — psp)nsn,  of the macrostate. Thereby, in biological terms, it
r=1

s=1 A\r= sr=1 captures the interaction between neuronal activity
R R . .

and plasticity rules, represented by the energy func-

29 52::1 Por(L = Pro)nony = 29 ;ps"(l = Pos)ns, tion, on the one hand and the entropic force on the

(3) other hand. For the simplified, network realization-
averaged model the (quasi-)equilibrium Fig. 4a,b as
well as approach to it, Fig. S1, matches well that
of the exact model. The simplified model explic-
itly highlights the contribution of the macrostate
entropy term, S(n) = InQ(n), which exclusively

which only depends on the macrostate. Together
with our assumption that the probability of a mi-
crostate is given by the Boltzmann distribution,
this implies that the probability of macrostate
n is proportional to its multiplicity Q(n) times



governed the dynamics of our very first engram
model, Fig. 3, and implicitly strongly impacts the
engram evolution in the full energy model. In the
presence of random representational drift, the en-
gram tends to evolve towards minima of the free en-
ergy rather than the energy, Fig. 4c, like statistical
physics systems that are described by a canonical
ensemble [36]. For the chosen system with symmet-
ric structural connectivity probability, the energy,
Eq. 3, is symmetric under switching the number
of neurons in regions. Thus, differences in reached
quasi-equilibria between the regions, Fig. 4, are due
to differences in the initial conditions and in the
entropic force. The initial conditions in Fig. 4b
vs. ¢ and in Fig. 4e are mirrored between Regions
1 and 2 [(n1,n2) = (15,0) vs. (n1,n2) = (0,15)].
The symmetric energy function alone would thus
induce mirrored temporal dynamics and mirrored
quasi-equilibria: Fig. 4c would look like Fig. 4b
with orange and blue colors interchanged and the
sets of quasi-equilibria in Fig. 4e would be mirror
symmetric along the diagonal. The entropic force
breaks this mirror symmetry (due the the difference
in region sizes), which manifests itself also in the
strongly asymmetric free energy landscape, Fig. 4e.
We note that depending on the inter-region connec-
tivity p and the form of energy, the engram can be
located in both regions or in only one. Since differ-
ent engram types may have different forms of en-
gram energy, this may explain why some engrams
remain hippocampus-dependent while other do not.

A biologically detailed model

In this section we develop a biologically detailed
model of a single engram to examine its drift in a
two-region network. As in the previous paragraph
we model the engram as a neuronal assembly. This
allows us to base our model on previous models of
multiple, non-overlapping assemblies that drift in a
single region [31,32]: The network (see Methods)
consists of linear Poisson (“Hawkes”) neurons, de-
scribing excitatory neurons in the balanced state.
We use standard spike timing-dependent plasticity
(STDP) with a slight modification: The strength
of the STDP depends on the firing rate of pre- and
postsynaptic neurons [51]. Further there is a rate
dependent weight decay of input synapses [52].
We divide the network into two regions with full
intra-region structural connectivity and symmetric

inter-region connectivity probability, as in the pre-
vious section. Fig. 5a shows a resulting single drift-
ing assembly in a network with two regions. Fig. 5b
displays the average number of assembly neurons in
the two regions after long evolution as a function
of inter-region connectivity. Trajectories towards
quasi-equilibrium are shown in Fig. S2. The qual-
itative features match the ones of the statistical
model of the previous section.
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Figure 5: Quasi-equilibria in the biologically de-
tailed engram drift model with two regions. (a)
Example assembly weight matrices after long evo-
lution for different inter-region connectivities, dis-
played as in Fig. 4b. (b,c) Number of assembly
neurons (mean =+ std) in Region 1 (blue) and 2 (or-
ange) and total size (black), after long evolution.
The assemblies are initially completely in (b) Re-
gion 1 or (c¢) Region 2. The dependence on inter-
region connectivity is similar as in the random-and-
deterministic drift model, cf. Fig. 4b,c.



Drifting engram in the mouse brain
model

One advantage of our statistical model, especially
the simplified, network realization-averaged ver-
sion, is its relatively low computational cost. This
allows to predict engram evolution in very large
neural networks and even create a model of brain-
wide engram drift. For this we combine brain-wide
information about mouse neuron density and type
[53], synaptic density [54], and connectivity [55,56],
to construct a model of the mouse brain (Methods).
Our model consists of 564 regions across two hemi-
spheres. These regions are the mesoscale anatomi-
cal structures from the Allen Brain Atlas with suf-
ficient available data. For each region we have esti-
mated the number of excitatory neurons, N, and
the probability of these neurons to be structurally
connected to excitatory neurons in other regions,
psr (Methods). The engram evolution in this net-
work is simulated like before: we use Glauber dy-
namics with the network realization-averaged en-
ergy function given by Eq. 3. As initial engram
macrostate we take a fear memory engram distri-
bution across the mouse brain that was experimen-
tally measured three days after learning [10]. In
the simplified model, Eq. 3, all microstates making
up this macrostate are equiprobable; we randomly
pick one of these microstates accordingly. Reached
quasi-equilibria for different parameter values of
the energy function are shown in Fig. S3. Some
parameter combinations lead to “forgetting”: the
engram completely vanishes. Others lead to very
large coding levels for some regions. We consider
such results as pathological and the parameters as
invalid (Methods). Forgetting occurs especially for
high numbers of desired inputs from other engram
neurons, k = 10* and k = 10°, as not enough such
inputs are available.

Figure 6 shows the engram dynamics and their
quasi-equilibria for some prominent brain regions
for two valid parameter sets. Fig. S4 analogously
displays results for the remaining valid parameter
sets; Figure 6a,d,e shows coding levels in further
brain regions. Figure 6 illustrates that the predic-
tions for individual regions can differ: in one case
we observe a substantial increase in engram neurons
in the basolateral amygdala and in another a rapid
increase in the anterior cingulate area. However,
there are also typical, consistent predictions across

valid parameter sets: For example, the engram
quickly leaves the hippocampal fields CA1-3 that
form large parts of the hippocampus. This fits clas-
sical ideas of memory consolidation (Introduction).
Further the overlap between the current and the
initial engram quickly decays to zero: the engram
quickly drifts away completely. This indicates that
some compensation that adjusts the inputs and
outputs of the assemblies to conserve behavior must
take place, such as unsupervised compensation [31].
Finally, the simulations predict that the overall en-
gram is conserved in the sense that its size does not
change substantially during its drift. The predic-
tion of strongly different coding levels in different
regions at quasi-equilibrium differs markedly from
those obtained with our purely-random drift model
and shows the relevance of connectivity and engram
energy.

Discussion

We have studied how the presence of a memory
engram in different regions of the brain dynam-
ically changes due to representational drift that
is purely random or deterministic with a random
component. The results suggest that the process of
memory consolidation may rely on such representa-
tional drift. The developed approach is general in
following sense: Its fundamental implications, es-
pecially the emergence of an entropic force, apply
whenever representational drift has a random com-
ponent. The drift mechanism is thereby irrelevant.
Further the transfer of an engram between regions
does not rely on a specific network architecture.
Finally the approach requires only minimal, gener-
ally accepted assumptions on the engram’s nature,
namely that it is formed by neurons or by neurons
and their interconnections.

The presence of randomness in representational
drift is generally very likely because random fluctu-
ations are ubiquitous in biological systems [58] and,
in particular, in the nervous system [59]. Further-
more, several recent modeling studies [31,32,60-62]
have shown that random representational drift can
occur as a consequence of experimentally observed
highly noisy spiking activity and random remodel-
ing of synapses, in conjunction with activity depen-
dent plasticity or homeostatic plasticity or both.

We have shown how to statistically describe the
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Figure 6: Fear memory engram dynamics and
quasi-equilibria in the mouse brain. (a) Initial cod-
ing levels inferred from Ref. [10], coronal and sagit-
tal sections, overlaid on Allen Mouse Brain At-
las [57] template. Coding levels for regions with-
out engram neurons are not shown. (b) Total en-
gram size, coding levels in selected macroscopic and
mesoscopic regions and self-overlap dynamics for a
valid parameter set (8 = 0.01, k = 250, g = 0.1).
Time t is Glauber steps; a suggested rough esti-
mate of the timescale based on the decay of self-
overlap [3,31] is displayed below. (c) Same as in
(b) but for a different valid parameter set (8
0.001, & = 500, ¢ = 1). (d) and (e): Same as
in (a) but for the quasi-equilibria of the parameter
sets used in (b) and (c), respectively. BLA - ba-
solateral amigdala; ACA - anterior cingulate area;
CA1, CA2, CA3 - hippocampal fields.

transformation of engrams over time. This ac-
counts on the one hand for the entropic force that
emerges due to random drift and the many possible
engram states. On the other hand, there are forces
that induce a deterministic drift. They may origi-
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nate from plasticity mechanisms, which for example
implement connectivity preferences; the (inhomo-
geneous) structural connectivity shapes them. To
incorporate these forces, we introduced the concept
of engram energy, which measures how beneficial an
engram state is for the engram. The combination
of random and deterministic drift is described by
an engram free energy.

Our model allows to predict how engrams drift
through the brain after learning. In general the en-
tropic force drives the engram towards an equal dis-
tribution with identical coding levels across brain
regions. This suggest that random representational
drift may be employed by the brain to aid the cre-
ation of distributed memory representations. Fur-
thermore, it allows engrams to go over potential
barriers to more beneficial states. These functions
add to previously suggested functions of the rep-
resentational drift, which range from drift being a
“bug” with no beneficial functions [63], to clearing
space for memory storage [64, 65], regularization
[66], sampling of solutions [67], and time stamp-
ing [68].

We derived our model from phenomenological
considerations, for which the precise drift mecha-
nisms are irrelevant. In particular, the origin of the
random representational drift component is not im-
portant. Furthermore, detailed knowledge of plas-
ticity mechanisms is not required. Rather, the al-
lowed engram states and some preference character-
istics are enough to construct the engram energy.
A comparison with a biologically detailed model
shows qualitative agreement between the predicted
engram dynamics. Additional biological detail can
be easily incorporated into our theory, like regional
or temporal differences in neuronal excitability and
in the magnitudes of random fluctuations.

Previous theoretical work on drifting assem-
blies studied drift within a single region [31-33].
Refs. [31, 32] model multiple drifting assemblies
without overlaps, which completely tile the region.
The drift is random and occurs due to noisy spik-
ing activity, synaptic turnover and changes in spon-
taneous rate. Ref. [33] models a single assembly,
which drifts due to a sequence of transient changes
in excitability.

In our theory memory consolidation is a transfor-
mation of engrams from the initial non-equilibrium
state towards stable (quasi-)equilibrium. This
transformation is driven by both random and deter-



ministic representational drift. Previous theoretical
models of memory consolidation generally consider
a few brain regions [17-26]. These models often use
elaborate plasticity schemes to transfer memories
from one region (usually a hippocampus model) to
another (usually an isocortex model). In our model
already a purely random drift can achieve such a
transfer of memories from one region to another,
if the size to the region to which engram is to be
transferred is much larger. The deterministic drift
(determined by the engram energy) modifies the
transfer dynamics and resulting engram states, but
preserves the general description of memory con-
solidation as drift.

Our study proposes an entirely novel, statisti-
cal physics-based class of models for representa-
tional dynamics. These models are both analyti-
cally and computationally well tractable. The lat-
ter allowed us to simulate the brain-wide engram
transformation of fear memory in the mouse brain.
This resulted in detailed experimental predictions.
There is some uncertainty in the predictions result-
ing from uncertainty about the parameters of our
energy function, which will be eliminated when the
predictions at a single or a few time points are ex-
perimentally tested. Our models further enable fu-
ture in silico experiments that predict the effects
of perturbations to the engram or the neural net-
work. For example, it is possible to systematically
lesion different brain regions and examine resulting
engram dynamics.

We do not explicitly take into account the contri-
butions of inhibitory neurons to the engram. How-
ever, our approach could be extended by incorpo-
rating terms into the energy function that include
inhibitory engram neurons.

We expect our approach to be applicable to var-
ious specific types of memories (e.g. episodic, se-
mantic, motor). In particular, we expect that it
will be possible to construct energy functions for
specific types of engrams, for example sequentially
structured ones, to predict their long term drift.
Furthermore, it will be possible to add terms to
the energy that account for the interaction between
different engrams.
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Methods

Purely-random drift model

To simulate engram evolution in our first model,
Figs. 1-3, we replace in each simulation step a ran-
dom engram neuron with a random non-engram
neuron, in the sense that the picked engram neu-
ron becomes a non-engram neuron and the picked
non-engram neuron becomes an engram neuron.
Each engram neuron has a n/N chance of being
picked for replacement, and each non-engram has
a (N —n)/N chance of replacing it.

We can write the dynamics of the macrostate of
the two-region model in the form of a Markov chain,

(4)

where ny(¢) is the number of neurons in Region 1
at simulation step ¢. The increment A(t) can as-
sume the values 0, 1, and —1: If an engram neuron
is replaced by a non-engram neuron from the same
region, we have A(t) = 0, since the number of en-
gram neurons in Region 1 does not change. If an
engram neuron from Region 2 is replaced with a
non-engram neuron from Region 1, the number of
engram neurons in Region 1 increases by 1 and we
have A(t) = 1. If an engram neuron from Region 1
is replaced with a non-engram neuron from Region
2, A(t) = —1. The increments have the following
probabilities of occurrence:

(’/l — nl(t)) (Nl — n1(t))

ni(t+1) = ni(t) + A(2),

P(A()=1) = oV ) : (5)
_ _nl(t)(N—Nl—(n—nl(t)))
P(A(t)=-1) = 2N —n) ;
(6)
P(A(t)=0) =1—-P(A(t)=1) — P(A(t)=-1)

This is because n(NN —n) is the total number of ways
that we can combine (and thus replace) one of the n
engram neurons with one of the N —n non-engram
neurons; further, for example (n—n1(t))(N1—n1(t))
is the number of ways in which we can combine
(replace) one of the n — nq(t) engram neurons of
Region 2 with one of the N; — n;(t) non-engram
neurons of Region 1. We note that these consider-
ations straightforwardly generalize to multi-region
models. In fact, if we focus on the macrostate of



region 1 as above in such a model, the same formu-
las hold as above, because we can gather all other
regions into one region.

The Markov chain specified by Eqgs. 4 to 7 is
irreducible and aperiodic and thus has a unique
equilibrium distribution [36]. We can rewrite
the macrostate equilibrium probability p(n) =
Q(n)/Qn) as function of the single variable nq,

p(ni) = (2[11) (Z:flvll)/(i\;), using the fact that
ng = n — n;. We obtain (ng) = ”TNl and
(n?) = (n1) (1+ %) by applying the

definition of expectation directly and using the
Chu—Vandermonde identity. For ni;, Ny > 1,
(n?) = (n1)(1 + (n1)), such that the coefficient of
variation is (nq)~1/2

To derive the analytical expression for the av-
erage trajectory Eq. 1, we calculate the expected
number of engram neurons in Region 1 after one
simulation step; in other words, we compute the
conditional expectation of ny(t) given ni(t — 1),

(na(®)[na(t = 1)) = (na(t = 1)[na(t — 1))

+ (A = 1)[ni(t - 1))
=(1-B)ni(t—1)+A,

(®)

n(]\zfv—n) and A = N]\En

used Equations (5) to (7) to directly average the
second term. We obtain for u > ¢

where B =

, and we have

n

>

ni(u—1)=0
X P(ny(u—1)|n(t))
= (1= B)(ni(u—1)[ni(t)) + A,
(9)
where we used the Markov property, which implies
that ni(u) depends on ny(t) only via nj(u—1), and
Eq. 8; the detailed derivation is given in Supple-
mental section S1. Starting with some initial state
n1(0) and applying ¢ times the recurrence relation
given by Eq. 9 yields Eq. 1.

(n1(u)[na(2)) (n(u)fna (u —1))

Random-and-deterministic drift

model

At each simulation step we construct a candi-
date microstate, m., by modifying the current mi-
crostate m as follows: We pick a random neuron.
If this neuron is an engram neuron, we remove it
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from the engram; if the picked neuron is a non-
engram neuron, we add it to the engram. The
candidate microstate is accepted with probability
1/(1 + ePH(me)=H(m)) " gtherwise, with probabil-
ity 1/(1 + eP(H(m)=H(me)) the system stays in the
current microstate. An analogous procedure is ap-
plied for the simplified model; in this model the
energies of different microstates are equal if they
belong to the same macrostate.

To obtain Eq. 3 we average Eq. 2 over the real-
izations of the A;;

2
H(m)zzz ZZAijmj_k m;
s i€s r jer (10)
+9y > (A — Ap)Pmamy,
5,7 1ES
JjET

where indices ¢ and j run over neurons and s and r
over regions, k € ¢ signifies that neuron k£ is in re-
gion ¢. To convert from microstates to macrostates
we use ng = Zies m;. We allow autapses, i.e. it is
possible that A;; = 1. Expanding terms of Eq. 10,
averaging using the fact that A;; are independent
Bernoulli random variables, and rearranging leads
to Eq. 3; the detailed derivation is given in Supple-
mental section S2.

Biologically detailed assembly model

The network consists of N linear Poisson neu-
rons that spike with instantaneous rates f;(t), for
i =1,2,...,N. The spike rate of a linear Poisson
neuron is incremented instantaneously at the ar-
rival of an input spike by an amount proportional
to the synaptic weight. In the absence of input
spikes the rate decays exponentially with time con-
stant 7 to the background value fs,. The dynamics
are thus given by

N
P = fop = B0+ 7Y (t) S0~ ),

where w;;(t7) is the strength of the synapse from
neuron j to neuron 4 just before time ¢ (where it
may change in jump-like manner, see below); ¢, are
the spike times of neuron j. The synaptic weights
are positive, with maximum possible weight wpax:
0< Wi < Wmax-



The synaptic strengths are modified at each pre-
and each postsynaptic spike by STDP that depend
also on the rates of pre- and post synaptic neurons

STDP __
i -

Aw (Ape bt/ 4 A e lti=tsl/ma)

x (fi(t))O(t; —t:) + f;(t)O(t: —t5)),

where A,, A4, Tp, T7q and © is the Heaviside step
function. In addition, each synaptic weight decays
at a constant rate. Finally if a neuron j spikes, its
output synaptic weights are instantaneously decre-
mented by an amount proportional to its frequency,

d

() = —dg D fi(E7)3(t = 1) = dep o,

tj
where d; and dg;, are constants, and the sum is over
all spikes times ¢; of neuron j.

Mouse brain model

The regions in our model are “summary struc-
tures” - non-overlapping mesoscale brain regions
defined by the Allen Mouse Brain Atlas [57]. We
use subscripts r and s, ranging from 1 to R, to
index these mesoscopic regions. The Allen Mouse
Brain Atlas also defines 12 macroscopic brain re-
gions [57]: isocortex, olfactory areas, hippocampal
formation, cortical subplate, striatum, pallidum,
thalamus, hypothalamus, midbrain, pons, medulla,
and cerebellum. We use this macroscopic structur-
ing to obtain reference regions for the estimation
of unknown data (synaptic densities) and to assign
long range connectivity properties (see below).

We obtain each mesoscopic region’s volume V.
and number of excitatory N, and inhibitory N/
neurons from Ref. [53]. The structural connectiv-
ity in the model is based on the mesoscale connec-
tome obtained by Ref. [56] and refined by Ref. [55]:
These studies measured connection strengths by
anterograde tracing such that both excitatory and
inhibitory projections are accounted for. We ob-
tain the volume-normalized connection strength be-
tween two regions, Dpo™, from ref. [55] and convert
it to the connection strength D,, = D}™V,V;.
We are interested in the excitatory connection
strengths, D, only. We assume that all long-range
(inter-region) connections are excitatory, DZE,
D,s if r # s, with the exception of those that
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are part of the subcortical brain regions and cere-
bellum, which have prominent inhibitory projec-
tions [69]. We therefore assume that the num-
ber of excitatory inter-region projections is propor-
tional to the number of excitatory neurons DE, =
NS%SNSIDTS’ if the region s belongs to the subcorti-
cal regions, i.e. to the macroscopic regions cortical
subplate, striatum, pallidum, thalamus, hypotha-
lamus, midbrain, pons, medulla, or if the region
belongs to the cerebellum excluding the cerebellar
cortex. The cerebellar cortex has only inhibitory
outputs [70], and we therefore set DE =0 if s is a
region in the cerebellar cortex. For the intra-region
connections, we estimate the connection strength
due to excitatory projections DE. by assuming that
the fraction of excitatory intra-region connections
equals the fraction of excitatory neurons, which
yields D,]?; = ﬁDrr. We assume that the
number of excitatoryrsynapses from region s to re-
gion 7, S, is proportional to the strength of con-
nections as measured by the anterograde tracing
S,s = 0,.DE . We estimate the region-specific pro-
portionality constant o, in a method similar to
the one used in Ref. [71]: Summing the number of
excitatory synapses from all input regions s to a
region 7, must yield the total number of excitatory
synapses in that region,

R R
ZS’““‘ = O'TZDFS =p
s=1 s=1

where pi¥", is the density of excitatory synapses in
region r, which we obtain for some regions from
Ref. [54]. For regions for which it is not available,
we estimate p¥" by taking the average over regions
in the same macroscopic region with known densi-
ties. Solving Eq. 11 for o, and inserting the result

into the defining equation for S, yields

syn
» Ve,

(11)

syny/,
Zs:l TS

Assuming that all N, + N/ neurons in a region
r are statistically equivalent, the probability that a
particular synaptic input from a region s is present
is given by the number of synaptic inputs from re-
gion s, Sy, divided by the number (N, + NI)N; of
in principle possible connections. For our simula-
tions we consider only the excitatory neurons. The

probability p$¥" that an excitatory neuron in region



r receives a synapse from an excitatory neuron in
region s, is then also given by

ST‘S

Psyn —
(N, + NIN,’

e (13)
for region r with excitatory neurons (N, > 0), oth-
erwise pY" = 0. Here we accounted for the fact
that we only considered output connections of ex-
citatory neurons, but did not distinguish whether
they end at excitatory or inhibitory neurons. The
total number of possible connections that we divide
by is therefore the product of the number of excita-
tory neurons in the sending and the total number
of neurons in the receiving area.

The probability pi¥* calculated above relates to
the already existing synapses. We assume that the
probability of a structural (potential) connection
is proportional to it, p,s = Ap}y". The propor-
tionality constant A depends on the filling fraction
and the number of synapses formed between two
neurons. The filling fraction estimates the ratio
of existing synapses to all potential ones without
major axonal or dendritic remodeling. It is esti-
mated to be 0.26 in some areas of mouse isocor-
tex, and ranges between 0.12 and 0.34 for differ-
ent brain areas and model organisms [40]. There
is typically more than one synapse between con-
nected neurons. For example, for the rat isocortex
on average 5.5 [72] and 4.7 [73] synaptic contacts
between neurons were reported. Multiple synapses
were also reported for the pairs of neurons form the
mouse isocortex [74]. Taking into account multiple
synapses between pairs of neurons on average com-
pensates the effect of the filling fraction, and we
therefore set A = 1.

We interpret p,s as the probability that a synapse
may in principle exist between two neurons, i.e.
that these neurons are structurally connected. p,s
and N,. specify our brain model; it covers 282 brain
regions (per hemisphere).

We obtain the initial state of the engram in re-
gion s as

RE

nS(O) =ng (1- nEC/NS)7 (14>

where !¢ and nB® are the average numbers of
excitatory neurons that were labeled by cFos in
the home cage and during fear memory recall three
days after fear conditioning, respectively [10]. The
rationale behind this formula is as follows: The
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probability that a neuron is active in the home
cage is nC/N, and the probability that a neu-
ron is active during recall is n?E/N,. We expect
that there is a background of spuriously active neu-
rons that we need to subtract from nfF to get
the true engram size. Due to the lack of infor-
mation about these neurons and the expectation
that spurious activity may be similar in both the
recall and the homecage measurement, we use as a
rough estimate that the number of spuriously ac-
tive neurons equals the number of neurons that lie
in the overlap of the sets of neurons that are ac-
tive during recall and in the homecage. Assum-
ing (somewhat contradictorily) that the probabil-
ity that a neuron is active during recall and in the
home cage are independent because the two events
have little in common, the probability of a neuron
to be spuriously active during a measurement is
then nfC/N, - nRE/N;. This yields as the proba-
bility of a neuron to be a true recall engram neuron
ns(0)/Ng = nRE/N, — nBE/N, . nEC/NS and thus
for the expected number of recall engram neurons
Eq. 14. We assume that both excitatory and in-
hibitory neurons are labeled by cFos with the same
probability, and scale the experimental data by the
fraction of excitatory neurons in the region to ob-
tain only the excitatory engram.

We repeated simulations five times for each pa-
rameter set (3, k, g). We consider a set of param-
eters as pathological, if it led to a coding level of
more than 20% in a region with more than 1000
excitatory neurons, at any simulation step, for the
majority of realizations.
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