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Supplementary figures

Simplifieda) b) c) d) Simplified

Figure S1: Engram macrostate dynamics in the random-and-deterministic drift model with full
and simplified energy function (parameters as in main text Fig. 4). Left hand side columns
a,b: dynamics in the model with engram energy given by main text Eq. 2. Right hand side
columns c,d: dynamics in the simplified model with engram energy given by main text Eq. 3.
Columns a,c: engram initially in Region 1; columns b,d: engram initially in Region 2. Rows:
various inter-region connectivity probabilities. The number of neurons in Region 1 is displayed
in blue (full model) or green (simplified model), the number of neurons in Region 2 in orange
(full model) or red (simplified model). Ten realizations are shown for each initial condition and
probability. The dynamics in both models are qualitatively similar.
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a) b)

Figure S2: Engram macrostate dynamics in the biologically detailed model. Column a: engram
initially in Region 1; columns b,d: engram initially in Region 2. Rows: various inter-region
connectivity probabilities. The number of neurons in Region 1 is displayed in blue, the number
of neurons in Region 2 in orange. We observe qualitatively similar forms of dynamics as in
the random-and-deterministic drift model (cf. Fig. S1). There are also obvious differences: in
particular the noise level in the biologically more detailed model is generally higher.
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Figure S3: Quasi-equilibria of the fear memory engram in the mouse brain for different pa-
rameters of the energy. Columns: selected regions. Top row: schematic display of the region
along with its initial coding level. Subsequent rows: Various parameters β. Matrices: Various
parameters g and k. Matrix entries: quasi-equilibrium coding levels, averaged over realizations.
Zero coding level is shown in white. Purple-dashed squares indicate parameters shown in the
main text Fig. 6. F - forgetting; P - pathological evolution; BLA - basolateral amigdala; ACA
- anterior cingulate area; CA1, CA2, CA3 - hippocampal fields.
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Figure S4: Fear memory engram dynamics and quasi-equilibria in the mouse brain as in main
text Fig. 6, for the remaining valid parameter sets.
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1 Derivation of the average trajectory

Main text Eq. 9 may be derived as follows:

⟨n1(u)|n1(t)⟩ =
n∑

n1(u)=0

n1(u)P (n1(u)|n1(t))

=
n∑

n1(u)=0

n1(u)
n∑

n1(u−1)=0

P (n1(u)|n1(u− 1))P (n1(u− 1)|n1(t))

=
n∑

n1(u−1)=0

⟨n1(u)|n1(u− 1)⟩P (n1(u− 1)|n1(t))

=
n∑

n1(u−1)=0

(
(1−B)n1(u− 1) + A

)
P (n1(u− 1)|n1(t))

= (1−B)⟨n1(u− 1)|n1(t)⟩+ A,

(1)

2 Derivation of the average energy

In the following we average main text Eq. 10 term by term. Since Aij ∈ {0, 1} are independent

Bernoulli random variables, we have Aij = A2
ij = pij. Furthermore, AijAgh = pijpgh if either

i ̸= g or j ̸= h or both. We assume that all neurons in region s have the same probability of
being structurally connected to neurons in region r, that is pij = psr for neuron i in region s
and neuron j in region r. We average the first term as follows

∑
s

∑
i∈s

(∑
r

∑
j∈r

Aijmj − k

)2

mi =
∑
s,r,q

∑
i∈s
j∈r
h∈q

AijAihmimjmh − 2k
∑
s,r

∑
i∈s
j∈r

Aijmimj

+ k2
∑
s

∑
i∈s

mi

=
∑
s,r,q
r ̸=q

∑
i∈s
j∈r
h∈q

pijpihmimjmh +
∑
s,r

∑
i∈s
j,h∈r
j ̸=h

pijpihmimjmh

+
∑
s,r

∑
i∈s
j∈r

pijmim
2
j − 2k

∑
s,r

∑
i∈s
j∈r

pijmimj

+ k2
∑
s

∑
i∈s

mi

=
∑
s,r,q
r ̸=q

psrpsqnsnrnq +
∑
s,r

p2srnsnr(nr − 1)

+
∑
s,r

psrnsnr − 2k
∑
s,r

psrnsnr + k2
∑
s

ns

=
∑
s

(∑
r

psrnr − k

)2

ns +
∑
s,r

psr(1− psr)nsnr.

(2)
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For averaging the second term note that it is zero if i = j, so we need to consider only the case
i ̸= j

g
∑
s,r

∑
i∈s
j∈r

(Aij − Aji)2mimj = g
∑
s,r

∑
i∈s
j∈r

(
A2

ij − 2AijAji + A2
ji

)
mimj

= g
∑
s,r

∑
i∈s
j∈r
i ̸=j

(pij − 2pijpji + pji)mimj

= g
∑
s,r

(psr − 2psrprs + prs)
∑
i∈s
j∈r
i ̸=j

mimj

= g
∑
s,r
s ̸=r

(psr − 2psrprs + prs)
∑
i∈s
j∈r

mimj

+ g
∑
s

(2pss − 2p2ss)
∑
i,j∈s
i ̸=j

mimj

= g
∑
s,r
s ̸=r

(psr − 2psrprs + prs)nsnr

+ g
∑
s

(2pss − 2p2ss)ns(ns − 1)

= g
∑
s,r

(psr − 2psrprs + prs)nsnr − 2g
∑
s

pss(1− pss)ns.

(3)

Combining the two terms yields main text Eq. 3.
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