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Figure S1: Engram macrostate dynamics in the random-and-deterministic drift model with full
and simplified energy function (parameters as in main text Fig. 4). Left hand side columns
a,b: dynamics in the model with engram energy given by main text Eq. 2. Right hand side
columns c¢,d: dynamics in the simplified model with engram energy given by main text Eq. 3.
Columns a,c: engram initially in Region 1; columns b,d: engram initially in Region 2. Rows:
various inter-region connectivity probabilities. The number of neurons in Region 1 is displayed
in blue (full model) or green (simplified model), the number of neurons in Region 2 in orange
(full model) or red (simplified model). Ten realizations are shown for each initial condition and
probability. The dynamics in both models are qualitatively similar.
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Figure S2: Engram macrostate dynamics in the biologically detailed model. Column a: engram
initially in Region 1; columns b,d: engram initially in Region 2. Rows: various inter-region
connectivity probabilities. The number of neurons in Region 1 is displayed in blue, the number
of neurons in Region 2 in orange. We observe qualitatively similar forms of dynamics as in
the random-and-deterministic drift model (cf. Fig. S1). There are also obvious differences: in
particular the noise level in the biologically more detailed model is generally higher.
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Figure S3: Quasi-equilibria of the fear memory engram in the mouse brain for different pa-
rameters of the energy. Columns: selected regions. Top row: schematic display of the region
along with its initial coding level. Subsequent rows: Various parameters . Matrices: Various
parameters g and k. Matrix entries: quasi-equilibrium coding levels, averaged over realizations.
Zero coding level is shown in white. Purple-dashed squares indicate parameters shown in the
main text Fig. 6. F - forgetting; P - pathological evolution; BLA - basolateral amigdala; ACA
- anterior cingulate area; CA1l, CA2, CA3 - hippocampal fields.
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Figure S4: Fear memory engram dynamics and quasi-equilibria in the mouse brain as in main
text Fig. 6, for the remaining valid parameter sets.



1 Derivation of the average trajectory

Main text Eq. 9 may be derived as follows:

n

(ni(u)na () = > ny(u)Plng(u)|na(t))

n1(u)=0
= Z ny(u) Z P(ni(u)ni(u — 1)) P(ni(u — 1)[na(t))
n1(u)=0 ni(u—1)=0

- Z (ni(uw)|ni(u — 1)) P(ni(u — 1)|ni(t)) (1)

ny(u—1)=0

n

= > (@=B)ni(u—1)+A)P(ny(u—1)|n(t))

n1(u—1)=0

= (1= B)(ni(u = Dfm(t)) + A,

2 Derivation of the average energy

In the following we average main text Eq. 10 term by term. Since A;; € {0,1} are independent

Bernoulli random variables, we have A_Z] = A?j = p;j. Furthermore, A;; Ay, = pijpgn if either
i # g or j # h or both. We assume that all neurons in region s have the same probability of
being structurally connected to neurons in region r, that is p;; = ps, for neuron ¢ in region s
and neuron j in region r. We average the first term as follows
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For averaging the second term note that it is zero if 7 = 7, so we need to consider only the case
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Combining the two terms yields main text Eq. 3.



